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Abstract. With an improved version of our model for inclusionof temperature into Davydov’s
model using the | D;) ansazz state we surveyed the parameter space of the Hamiltonian.
Solitons were found to be stable at 300 K under certain conditions on the parameter values
which may be fulfilled in proteins. It is numerically shown that our results agree with those
of special versions of Lapgevin-equation models. Also agreement with recently published
perturbation thearetical resulis is found.

1. Introduction

For the explanation of a wide variety of chemical and physical phenomena the intro-
duction of non-linear forces has turned out to be necessary (see [ 1] and references therein
for ashortlist). Many biological processes are associated with an energy transfer through
proteins, where this energy is released by hydrolysis of adenosine triphosphate (aTp).
The mechanism of this energy transport is not quite clear [2]. As an alternative to
electronic mechanisms [2], one can assume that the energy is stored as vibrational energy
in the CG=0 stretching mode (amide-1) of a polypeptide chain. Following Davydov's
idea [3], one can take into account the coupling between the amide-I vibration and the
acoustic phonons in the lattice. Through this coupling, non-linear terms appear in the
equations of motion. In this way the energy can be transported as alocalized wave packet
in solitary waves. Direct experimental evidence for the existence of such solitons in
proteins is still missing. This is due to the complex structure of proteins, which makes
such measurements very difficult. However, in acetanilide crystals a substructure with
chains of hydrogen bonds similar to proteins is present. In low-temperature infrared and
Raman spectra of these materials a new band in the amide-I region appears. Up to now
this band could only be explained with the help of a model similar to the Davydov soliton
concept in proteins [4]. However, in this case the amide-I vibration is coupled to optical
phonons and the soliton is pinned.

Since Davydov’s [5] result that solitons are stable at T = 300 K, which he obtained
via analytical considerations, there has been considerable discussion on this point in
the literature. Halding and Lomdahl [6] found stable pulses at T = 310 X in classical
molecular dynamics studies on peptide units moving in a Lennard-Jones potential.
Lomdahl and Kerr [7] and Lawrence ef af [8] used the | D,) ansatz together with a
damping and a noise term to introduce temperature. They found stable solitons only for
T = 10 K. However, Bolterauer [9] argued that their classical thermalization scheme
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Figure 1. Schematic picture of a hydrogen-bonded channel in a protein.

should lead to incorrect resuits when applied to a quantum system. Bolterauer [9] and
other workers (see references in [9]) found solitons to be stable at T = 300 K. Cruzeiro
et al [10] derived a thermally averaged Hamiltorian and evolution equations using the
(D) ansatz. They also found stable solitons at 300 K. Very recenily Cottingham and
Schweitzer [11] found a lifetime of only about 1 ps for the soliton at 300 K using per-
turbation theory. Wang er o/ {12] found solitons to be stable up to about 7 K with the
help of quantuom Monte Carlo simulations.

In this paper the model used in our previous works {13, 14} is worked out and applied
within a wide range of parameters (section 2). In this model we populate the normal
modes of the lattice according to the temperature under consideration (Bose-Einstein
distribution). After lattice equilibration the soliton is started in the thermalized Jattice.
In section 3 we compare several versions of a Langevin-equation model with each other
and with ours. In Langevin-equation models it is assumed that the system transfers -
energy to its degrees of freedom which are not explicitly treated and function as a heat
bath. This energy trapsfer is modelled by a damping term. The external degrees of
freedom transfer energy back in a random manner, modelled by a random force term.
Section 4 deals with perturbation theory results following [11]. In [11] the Hamiltonian
is partially diagonalized such that the | D,) soliton is an exact eigenstate of the diagonal
part. The off-diagonal part is treated as perturbation. Then one can compute the
transition probability from a state with a | D,) soliton plus a thermally averaged phonon
distribution to a final state containing only phonons by first-order perturbation theory.
In this way the lifetime of | D) solitons can be obtained. Finally in section 5 the results
are summarized.,

2, Heat bath model and soliton dynamics

The Hamiltonian used for thisstudy is in the most simple form for the system investigated
in [3]. More sophisticated forms of the Hamiltonian which incorporate more details of
the protein structure have led qualitatively to the same results [15]:

A g Fol e ol ’2 W
A=3 (Eobiby = 1(61bu +bib) +E24 24— 401"
n M2
+ XB36,(4s — dn-1)) M
In equation (1), &} and b, are the usual boson creation and annihilation operators
respectively [15] for the amide-I oscillators at sites # (figure 1).
From infrared spectra the ground-state energy of an isolated amide-I oscillator
can be deduced (Ey 0.205eV) [16]. Usually for all parameters in equation (1), site-
independent mean values are used. The average value for the dipole—dipole coupling
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between neighbouring amide-I oscillators is J = 0.967 meV [16]. The average spring
constant of the hydrogen bonds is usually taken to be W = 13N m™' [16]. In our pre-
liminary paper [13] we used W = 76 N m~! which is the spring constant for the hydrogen
bonds in the hydrogen carbonate dimer [17]; p, is the momentum and 4, the position
operator of unit n. The average mass M is taken as that of myosine (M = 114m, where
m,is the proton mass) [16]. The energy of the CO stretching vibration in hydrogen bonds
is a function of the length r of the hydrogen bond (E = E; + Xr) {18]. For X the
experimental value is 62 pN [16]. Ab initio calculations on formamide dimers usually
lead to X = 30-50 pN [19].

For the solution of the time-dependent Schrodinger equation we used the displaced
oscillator state ansatz (| D,}) [3]. In [3, 5] the expectation values of the Hamiltonian (1)
with | D,) was formed and this expectation value was used as the classical Hamiltonian
function. In this way Davydov obtained the equations of motion. Kerr and Lomdahl
[20] have shown that these equations can be obtained also by purely quantum mechanical
methods and also for states of more than one quantum [21]. Explicit forms of the
equations of motion used can be found in [1].

In the case of Davydov’s more sophisticated | D,} states the optimized equations of
motion can only be obtained by quantum mechanical methods 22, 23]. Here Davydov’s
[5] method leads to different equations which do not reproduce the exactly soluble
transportless case (J = 0) of (1) as shown by Brown et al [24-26], while the optimized
| D) equations do [22,23]. The |D,) state reproduces the lattice dynamics for J = 0
correctly but leads to an incorrect phonon energy [24-26]. Since | D,) results can be
mapped onto the results of the partial dressing theory of Brown and Ivic [27] and only
the energies are incorrect, we decided to use the | D,) equations for our calculations.

In practical calculations on chains of N units we added an additional potential term
V'=W'(q, + gn) with W' = 100W to (1) in order to keep the chain ends fixed. For the
inclusion of temperature we first solve the decoupled lattice problem (X = 0)[28], which
is simply a chain of coupled harmonic oscillators. As initial excitations we distribute an
energy of NkgT (where kg is Boltzmann’s constant) on the normal modes using Bose~
Einstein statistics, Half of this energy was distributed as potential energy and the other
half as kinetic energy. Thus the lattice displacements at a given time {; are

Gute) = 2 Ve o sin(wrty + @)
k Wy
@)

Galto) = 2 Vi cos(@ity + @)
P
where the initial displacements and momenta are contained in y, and ¢

. . {w
@ = sin 1(ﬁ2 Vﬂkqn(ﬁ))

re=[0d(2vu0.0) + (Svuao) ] ®

Here w, are the eigenfrequencies and V contains the eigenvector coefficients of the
decoupled chain, The time ¢, can be chosen arbitrarily. The results of soliton dynamics
do not depend on the choice of t, as we have shown in [14]. However, since ¢, is the time
actually used for lattice equilibration, it should be kept explicitly to ensure that the
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reported calculations are fully reproducible. At ¢, with the thermally equilibrated lattice
we introduce a vibrational quantum at a given site 2y (usually we use N = 200, ny = 199
and 1 = 120 ps).
Now g,(z + #5) can be decomposed into two parts:
Qn(t + ‘rU) = Qn(t) + qn(t + tD) (4)
where 2,(0) = 0 and

Tt + 1) = 3 Vo Esinfw,0-+ 1) + @l 5)
Using M§, = W(g,+1 — 24, + §,_1) the equation of motion for Q,, is
MQn = W(Qui1 —20n + Q1) + X{Japa | -1an|2)' (6)
Now one performs a phase transformation on a,:
[ _iX M
tu=byexp(~i % [ @ - g ) = b, exp(22) )
fo
with
Y
Fo= =2 (Ve = Vari) ;%’{Cosfwk(f +to) + @] — cos(wpty + @)} 8
k
Thus we obtain finally
ihby = I {bys1 expl~i{X/R)ga] + by
X expl+i(X/A)gn-1 1} + X(Qr — Qn-1)b, 9)
where
En = fru _fn (10)
and
MQH=W(QA+1 _an + Qn—1)+X(lbn+1|2" |bn'2)' (11)

Note that, for ¢ = tg, f{(tc) = 0 and thus b,(te) = a,(te). |2, (¢ + ) [F = |b,(t + t)[* holds
anyway. Note further that Wg, = AJ, (¢ + &) = p.(t + ty) — P.{&) is the change in
momentum of unit r# due only to thermal motion,

As equation (9) shows, the heat bath introduces two oscillating phase factors at J.
These oscillations occur in both space and time. The spatial oscillation is due to the
normal mode coefficients V,,. With increasing temperature the admixture of higher
normal modes increases, which have more spatial oscillations owing to their larger
number of nodes. Thus temperature has the same net effect as disorder in the site energy
E, which can be traced back to exactly the same mathematical structure [1]. However,
in addition we also have oscillations in time which become faster with increasing tem-
perature owing to the higher frequencies (w,) which become more important. Since the
phases at J are proportional to the coupling constant X, one expects a threshold value
for X. If X becomes larger than this threshold, the soliton should be destroyed. However,
its value has to be determined numerically.

Since in our model only a phase at J occurs, this phase factor cannot be viewed as an
analogue to the Debye—Waller factor found in | D,) theories [5, 10]. In these cases the
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Figure 2. Survey of the [W, X]-parameter space at J = 0.967 meV and T=0K for | D)
dynamics for a one-site excitation: O, dispersive; M, dispersive solitary wave travelling
siowly; @, travelling soliton; &, pinned soliton; ——, function given in equation (12).

exponent contains a real part and thus J is scaled to lower values. However, Scott [29]
argues that probably one should introduce an additional Debye—Waller factor into the
| Dy) theory also. A possible way to introduce a Debye~Waller factor into | D) theory
could be to use the factor occurring in | D) or partial dressing theory and remove its site
dependence. However, it is questionable whether such a procedure would be consistent.
In the following sections we shall compare the results of our above-described model also
with those of other methods 1o treat temperature. These methods will be described in
the appropriate sections.

Asmentionedabove, we useda,(0) = 8, ;o9inachainof200unitsasinitial conditions.
For the numerical solution of the equations of motion a Runge-Kutta method correct
up to fourth order in the time step 7 was applied [30]. Using a time step of t = 1 fs and
T =300 K each of the simulations through 120 ps required roughly 850 cpu s on a CDC
Cyber 995 E computer. The norm remained constant up to about 10~% and the total
energy error was less than 0.6% of its initial value. A possible (owing to numerical
errors) imaginary part of the total energy remained zero within 10~ eV,

For compartson we show in figure 2 the results at zero temperature and J =
0.967 meV. The full curve corresponds to the formula

W= (16/72J)X? (12)

which gives the threshold for travelling solitons in zero-temperature continuum theory
[29]. Eachcircle represents a simulation performed. The results show that the continuum
theory formula (12)is well reproduced by our numerical study. The threshold for pinning
shows a linear curve. A surprising observation was made for W= 10N m~! with X =
100, 110, 120 and 130 pN. In those cases besides the pinned soliton a travelling small-
amplitude soliton is emitted,

In figure 3 the results of our simulations are shownfor Jf = 0.5,0.7,0.9and 1.1 meV
in the same way as figure 2 for 7= 300 K.
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First of all one recognizes that the zero-temperature continuum limit curve (12} still
agrees fairly well with the threshold X, for the formation of travelling solitons. This
observation in connection with previous results [14] was first made by Scott [29]. The
agreement, however, is best for small values of J and fairly good up to J = 0.967 meV,
while for J = 1.1 meV it is worse. However, as discussed already in [14] for 7 = 300K
there is a second threshold X;. For X > X, the travelling solitons are destroyed by
thermal fluctvations. Since X,(W) intersects X1(W), we also have a threshold vatue for
W below which no travelling solitons are possible. We find this value to be 20 N m™! for
J=0.5meV,30Nm~!forJ =0.7meV,and 40 N m~! for 7 = 0.9 meV and also forJ =
1.1 meV. However, since for X,( W) no analytical form is known, these values can only
be determined numerically. In general, the smaller J, the larger the stability region of
travelling solitons becomes. This is to be expected physically, since J is responsible for
the dispersion of the excitation.

In addition a third threshold X y(W) occurs such that for X > X, a pinned solitary
wave occurs. For large values of W, X, and X; coincide and no dispersion can be
observed. Physically for W > W, (W is the soliton threshold for W) if X < X, the non-
linearity is not strong enough to prevent the dispersion of the initial excitation. For
X, < X < X, the non-linearity is strong enough for this purpose and a travelling soliton
results. However, since the thermal fluctuations enter the equations of motion for g, in
aterm proportional to X, dispersion occurs again for X; < X < X;. Then the fluctuations
in the term X{g, — g, -1)a, are large enough to destroy the soliton. Finally, for X > X;
a pinned soliton occurs which disperses very slowly into the chain. W, occurs because, if
Wissmall, the displacementsg, ~ ¢, - must belarge to accommodate a potential energy
$NkyT in the lattice. These large displacements interfere with the soliton and are then
able to destroy it.

Brizhik ez al [30] found from continuum theory that for an initial excitation located
at site ng and given by

a, = A sech{(n — ng)X*/4JW] (13)

the threshold for soliton formation should be at X = 0. A is a normalization factor. Thus
it seems to be interesting to study this case too. In figure 4(a) we show forJ = 0.967 meV
the case T = (. Points in circles indicate here computations where the width of the pulse
is too large to allow meaningful simulations within a chain of 200 units. #, = 199 was
used in the case of figure 4. That implies that a soliton threshold of X = 0 does not mean
too much since for small X the initial pulse is already broader than 200 units. In the
small-X region, rather broad solitary waves occur. They move very slowly away from
rg = 199 and tend to stop after a couple of units. In addition they disperse slowly.
Crossed black circles in this region mark cases where the waves are not fully dispersed
after 120 ps. Real solitons show up for X-values larger than in the case of a one-site
excitation. In the region of large X and small W the puise (13) is so small that it can be
already considered as a one-site excitation. The soliton thresholds are linear in this case.
In figure 4(b) we show the T = 300 K case. Obviously the region of travelling solitons is
much smaller than for the one-site excitation. The region with extremely slowly moving
dispersive solitary waves is smaller than for T = 0 as expected. An explanation for this
phenomenon is still missing. If one centres the pulse at ny = 150 (figure 4(c)), the picture
becomes irregular. However, the region where solitons occur is larger. In our opinion
an initial sech pulse is somewhat artificial. There is no physical reason why energy
released by hydrolysis of ATP should excite the amide-I oscillators with a preformed
soliton shape. To us an initial one- or two- site excitation seems to be far more probable.
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Figure 4, Same as figure 2 with our heat bath model for {2) T = 0 K, sech pulse at ny = 199,
(b) T=300 K, sech pulse at ny = 199, and {c) T = 300 K, sech pulse at n, = 150. Here ©
indicates parameter values where such a pulse is spread over the complete chain and thus a
200-unit chain allows no meaningful simulation.

3. Langevin equation

In the Langevin ansatz for the treatment of temperature as reported by Halding and
Lomdahl [6] and Lomdahl and Kerr [31] a damping term and a random force term is
added to the equations of motion:

ihd, = “"I(an-f-l * anul) + X(Qn - qn*l)an (140)



Davydov solitor dynamics: T effects 4341

Mo =W(gner +24n + gn-1) + X(I8,41 | —~ |a, ) — MTg, + F,(9). (14b)
Using as correlation function
(F(x, )F(0, 0)) = 2Mkg TTS(x)5(1)/a (15)

(a is the lattice constant) (14b) becomes a Langevin equation. The random forces are
assumed to follow a normal distribution with standard deviation

W(F,) = (1/V270) exp(—F3/20). (16)

In actual computations we computed a series of L =12 random numbers X, (f)
(0 < X, (r) < 1) for each site at each time step ¢ and generated the forces as

F()=Vo 2 [Xu() 4] (17)

Thus the variance of X)) — }1s % and the standard deviation of F{ is V g, with its mean
value 0 as required. The interval for the random forces is |F(‘) | < 6V/o. Thus (17)
represents an approximate Gaussian distribution which would be exact for L — . The
effect of the two additional terms is to drive the system into thermal equilibrium with a
time constant I'. Requiring the random force to be constant within a time step 7 we
obtain

o = 2Mky TT/T. (18)

T is the inverse time constant of the heat bath. If T is large, the heat bath is fast and vice
versa. Im our actual simulations in this case we fixed units 1 and N (N =200) at g, =
gy = 0 and we used T = 5 fs. For a typical simulation the norm is conserved up to 10~
in 120 ps. Halding and Lomdahl [6] and Lomdah} and Kerr [31] worked with two models
at the standard set of parameters only. They chose ' = v, where vy, is the lowest
(non-zero) frequency of the lattice. For a chain of 100 units, W=13Nm™ and M =
114 M,, thelowest phonon frequencyis wy = 0.2594 ps~!, leading to v, = 0.041 28 ps™
or me = 0,005V W/M. For 200 units we obtain wy=0.1297ps™! and I'= vy, =
0.020 46 ps~'. Thus the heat bath has the same time constant as the slowest vibration of
the lattice.
In model I they equilibrated the decoupled lattice until

(E §M330)) = INks T (19)

is achieved and thus the lattice is equilibrated. Then the heat bath is switched off and
the soliton started. This model should give similar results to ours. In model If they
switched on the heat bath and the soliton dynamics simultaneously. However, this
corresponds to an amide-I excitation in a lattice with a zero-temperature equilibrium
structure. We believe that model I and ours are more physical, since in these cases the
soliton is started in a thermally equilibrated lattice, a situation which should be closest
to reality. Finally we introduce a model I, where we first equilibrate the lattice but,
after the soliton has been started, the heat bath is not switched off. Model I and ours
should be reasonable if the heat bath is slow compared with the soliton velocity, while
model 111 should be the best if the actual value of I" is of importance.

For comparison with the results of [6, 31] note that we used the asymmetric exciton—
phonon interaction while [6, 31] use the symmetric interaction. However, the structure
(figure 1) suggests that an asymmetricinteractionisrealistic. Inthe symmetricinteraction
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model the C = 0 oscillator # would interact with the hydrogen bond in which it takes
part with the same strength as with the hydrogen bond between units n and n + 1 in
which it does not take part. Estimates show that the coupling constant for the latter
interaction is an order of magnitude smaller than that for the former, and thus the latter
interaction can be neglected [15]. For comparison we show in figure 5(a) the results of
an [X, W] parameter space survey atJ = 0.967 meV, T = 300 K, using our model. One
simulation using Langevin equations used typically 100 cpu s for model I, 700 cpuU s for
model II, and 1500 cpu s for model II1 on our Cyber 995E computer. In figure 5(b) we
show the results obtained with model 1 and I' = v ;;,. As we expected, figures 5(a) and
5(b) are very similar and the two models agree with each other. In the region of the
parameter values used in [6, 31] we find no soliton, in complete agreement with [6, 31].

Using model I for all parameter sets in figure 5(b) we found no trace of a soliton or
a solitary wave, again in agreement with [6, 31]. However, as explained above, we
consider model I as rather unphysical. In model I, I is not important, because the lattice
is equilibrated before the soliton start and the heat bath is switched off afterwards. In
model II we expect that for decreasing I' the results should approach the zero-tem-
perature situation since, if the heat bath becomes very slow, it simply has not enough
time to disturb the soliton. In figure 5{¢) we show the results for model III using I" =
0.1v.;,. As is obvious for the slow heat bath we obtain results whichk are in rough
agreement with ours and those of model I. In figure 5(d), I' = vy, is used. We see that
the region of soliton stability is shifted to smailer X-values. Obvicusly the faster heat
bath requires a smaller interaction of the lattice fluctuations with the oscillators to allow
atravelling soliton. Using a still faster heat bath (I’ = 10r_;,) not shown in figure 5, the
region of stable traveiling solitons vanishes completely. Only pinned solitons are still
found. :

Thus our model agrees with Langevin model I and with model IH if in the latter case
the heat bath is not too fast (I' < v,,). However, concerning Langevin-equation models
the point made by Bolterauer [9] still holds. He uses the simple model of two coupled
harmonic oscillators and treats them both quantum mechanically on the one hand, and
one quantum mechanically and the other classically on the other hand. He finds that in
the adiabatic treatment the energy transferred into the quantum oscillator is too large
compared with the exact treatment. He concludes [9] that thus in Langevin models the
effects of thermal fluctuations on the soliton may be overestimated.

4, Perturbation theory

A very appealing model for treating temperature effects on Davydov solitons was
recently introduced by Cottingham and Schweitzer [11]. They {11] could diagonalize the
Hamiltonian partially. Then one can define H = H, + V where H, is the diagonal part
of A and V the non-diagonal part. Thus V can be treated asa perturbation. Furthermore
the Davydov soliton state (| D)) is an exact eigenstate of H;; and thus first-order per-
turbation theory using V as perturbation allows one to calculate the soliton lifetimes.
They could compute the transition probability from aninitial state containing a Davydov
soliton and a thermal distribution of phonons to a final state without the soliton. From
this probability they could derive an explicit expression for the lifetime of a pinned
soliton.

Tao compare our model with that of Cottingham and Schweitzer [11] we took a cyclic
chain as in [11] where only pinned solitons are found numerically {28]. We used W =
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13N m, X = 62 pN and a,(0) = A sech[(n — 100)X2/WJ] as initial condition as in [11].
In addition we implemented the symmetric interaction into our program for the purpose
of comparison, since in {11] this model was used. As shown in [20], the two interaction
models lead to rather different results. For comparison we variedJ and estimated soliton
lifetimes from our model. For this purpose the initial excitation was placed at site 100
and we used the soliton detector plot in [6, 31]. In this plot each point in the (n, ) plane
where |a,(t)]* > 0.02 and g,. — g,-; <0 (the typical soliton conditions) coincide is
marked. The case J = 0.967 meV is shown as an example in figure 6(a). The plot shows
that this kind of presentation is not suitable to estimate soliton lifetimes.
The exciton part of the numerically computed wave function is

|$(2)) = exp(—iEt/&) X, a,(0)at|0) (20)

E=Ey+ 12 [p}/M+ W(g, = gu-r V] (21)
Further, the exciton part of the solution of Hy for soliton velocity v, = 0 is given by [11]

| D;) = exp(~iEt/k)A 2 sech[(n —ng)X2/WJI)az |0) (22)

E=E,—-2J - Wi3/3X*. (23)
Thus we can easily compute

(D, () = exp(iAL/BIA 2 a,(Dsech[(n — n)X3/WJ) (24)

A=—2J - WU3/3X* ~ 4 D [p3/M + W(g, — ¢; ] (25)

and the weight of the initial soliton state in the exciton part of the wave function is
w(t) = |(D,/® (t)}|. Figures 6(b) and (c) show two examples of w(¢) for long time
simulations with J = 0.2 and 0.3 meV. As an indicator for the soliton lifetime we take
the Jast maximum of w{¢) before the steep descent to 0.5 or below, which occurs for each
J value considered. For the actual estimation of lifetimes we have recalculated the
dynamics through a smaller time appropriate for each value of J (double the soliton
lifetime from perturbation theory). However, one has to keep in mind that, from
dynamical simulations, only estimates can be obtained.

In table 1 we show the lifetimes (7,) obtained with our model at 300 K and the
lifetimes (z;) computed with equation (31) of [11] for some values of J. Our program
for computation of 7, was checked by reproducing the results given in [11]. In figure 7
the results are plotted to facilitate comparison. Obviously the two models agree very
well and the decrease in soliton lifetimes with increasing J is certainly correct since J
governs the dispersion and J = 0 is simply the transportless case.

5. Conclusion

We have studied the soliton stability at T = 300 K within a wide range of parameter
values and in different models. We found agreement of our model with Langevin models,
provided that the heat bath is not too fast compared with the soliton. Our model agrees
at least qualitatively also with perturbation theoretical results. For further justification
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Table 1. Lifetimes of a pinned soliton in a eyclic chain of 200 units with a sech pulse as initial
condition at 300 K (W = 13N m™; X = 62 pN; M = 114m,) as estimated from our model
(r,) and calculated from perturbation theory [20] (r;) as function of J.

J T Ty
{meV) (ps) (ps)
0.0 x o
0.1 96.0 207.91
0.2 25.0 24,58
0.3 8.2 8.14
0.4 3.8 3.95
0.5 2.6 2.34
0.6 1.6 1.56
0.7 1.5 1.13
0.8 1.1 0.87
0.9 0.7 0.69
1.0 0.6 0.58
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Figure 7. Soliton lifetime T, as function of 7 computed with the Cottingham-Schweitzer
formula (—--) and as estimated from our model (*).
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of our model the extension of the recently published quantum Monte Carlo simulations
[12] to parameter values where we find stable solitons at 7 = 300 K would be desirable,

However, based on the above given comparisons, we are confident that our basic
conclusion of soliton stability in a parameter region W > 40N m~! and X > 50-60 pN
should be model independent. The values of X for proteins found in the literature are
roughly in this range (experimental value X = 62 pN). The usually quoted value of W =
13 N m~1!is certainly too small to allow soliton formation. However, as aiready discussed
before [14], a value of W taken from crystalline formamide [32] is certainly too low. In
formamide, free molecules vibrate while, in proteins, vibration of a hydrogen bond
requires distortions of the covalent backbone of the a-helix. Thus an effective spring
constant for this vibration should be larger than the formamide value. For a clear
decision of whether the Davydov mechanism in proteins can function, first of all realistic
parameter values have to be established. Attempts based on ab initio calculations are in
progress [33]. Further, the existing models for treating teraperature effects should be
compared, especially their dependence on the parameter values. Finally one has to
mention that there is still no quantitative information available about the errors intro-
duced by the different ansatz states used in the literature.
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