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Abstract. Withanimprovedvenionofour model for inclusionof temperature into Davydov’s 
model using the ID2) (~wafz state we surveyed the parameter space of the Hamiltonian, 
Solitons were found to be stable at 300 K under certain conditions on the parameter values 
which may be fulfilled in proteins. It is numerically shown that our results agree with those 
of special versions of Langevin-equation models. Also agreement with recently published 
perturbation theoretical results is found. 

1. Introduction 

For the explanation of a wide variety of chemical and physical phenomena the intro- 
duction of non-hear forces has turnedout to be necessary (see [ 11 and references therein 
for ashort list). Many biological processes are associated with an energy transfer through 
proteins, where this energy is released by hydrolysis of adenosine triphosphate (ATP). 
The mechanism of this energy transport is not quite clear [2]. As an alternative to 
electronic mechanisms [2], one can assume that the energy is stored as vibrational energy 
in the C=Q stretching mode (amide-I) of a polypeptide chain. Following Davydov’s 
idea [3], one can take into account the coupling between the amide-I vibration and the 
acoustic phonons in the lattice. Through this coupling, non-linear terms appear in the 
equationsofmotion. In thisway theenergy can be transportedasalocalized wave packet 
in solitary waves. Direct experimental evidence for the existence of such solitons in 
proteins is still missing. This is due to the complex structure of proteins, which makes 
such measurements very difficult. However, in acetanilide crystals a substructure with 
chainsof hydrogen bondssimilar to proteinsispresent. In low-temperature infrared and 
Raman spectra of these materials a new band in the amide-I region appears. Up to now 
this band could only be explained with the help of a model similar to the Davydov soliton 
concept in proteins [4]. However, in this case the amide-I vibration is coupled to optical 
phonons and the soliton is pinned. 

Since Davydov’s [5] result that solitons are stable at T= 300 K, which he obtained 
via analytical considerations, there has been considerable discussion on this point in 
the literature. Halding and Lomdahl [6]  found stable pulses at T =  310 K in classical 
molecular dynamics studies on peptide units moving in a Lennard-Jones potential. 
Lomdahl and Kerr [7] and Lawrence er a1 [8] used the IDz) ansarz together with a 
damping and a noise term to introduce temperature. They found stable solitons only for 
T -  10 K. However, Bolterauer [9] argued that their classical thermalization scheme 
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Figure 1. Schemattc picture of a hydrogenebonded channel u1 a protein 

should lead to incorrect results when applied to a quantum system. Bolterauer [9] and 
other workers (see references in [9]) found solitons to be stable at T- 300 K. Cruzeiro 
ef a1 [lo] derived a thermally averaged Hamiltonian and evolution equations using the 
ID1) amafz. They also found stable solitons at 300K. Very recently Cottingham and 
Schweitzer [ l l ]  found a lifetime of only about 1 ps for the soliton at 300 K using per- 
turbation theory. Wang et a1 [12] found solitons to be stable up to about 7 K with the 
help of quantum Monte Carlo simulations. 

In this paper the model used in our previous works [ 13,141 is worked out and applied 
within a wide range of parameters (section 2). In this model we populate the normal 
modes of the lattice according to the temperature under consideration (Bose-Einstein 
distribution). After lattice equilibration the soliton is started in the thermalized lattice. 
In section 3 we compare several versions of a Langevin-equation model with each other 
and with ours. In Langevin-equation models it is assumed that the system transfers 
energy to its degrees of freedom which are not explicitly treated and function as a heat 
bath. This energy transfer is modelled by a damping term. The external degrees of 
freedom transfer energy hack in a random manner, modelled by a random force term. 
Section 4deals with perturbation theory results following [ll].  In [ l l ]  the Hamiltonian 
is partially diagonalized such that the ID2) soliton is an exact eigenstate of the diagonal 
part. The off-diagonal part is treated as perturbation. Then one can compute the 
transition probability from a state with a 1 D2) soliton plus a thermally averaged phonon 
distribution to a final state containing only phonons by first-order perturbation theory. 
In this way the lifetime of I D2) solitons can be obtained. Finally in section 5 the results 
are summarized. 

2. Heat bath model and soliton dynamies 

TheHamiltonianusedfor thisstudyisin themost simpleform forthesysteminvestigated 
in [3]. More sophisticated forms of the Hamiltonian which incorporate more details of 
the protein structure have led qualitatively to the same results [U]: 

In equation (l) ,  6; and 6" are the usual boson creation and annihilation operators 
respectively [15] for the amide-I oscillators at sites n (figure 1). 

From infrared spectra the ground-state energy of an isolated amide-I oscillator 
can be deduced ( E ,  0.205eV) [16]. Usually for all parameters in equation (l), site- 
independent mean values are used. The average value for the dipole-dipole coupling 
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between neighbouring amide-I oscillators is J = 0.967 meV [16]. The average spring 
constant of the hydrogen bonds is usually taken to be W = 13 N m-’ [16]. In our pre- 
liminary paper [ 131 we used W = 76 N m-l which is the spring constant for the hydrogen 
bonds in the hydrogen carbonate dimer [17]; p,, is the momentum and 4. the position 
operator of unit n. The average mass M is taken as that of myosine ( M  = 114m, where 
mp is the proton mass) [16]. The energy of the CO stretchingvibration in hydrogen bonds 
is a function of the length r of the hydrogen bond ( E  = Eo + Xr) [18]. For X the 
experimental value is 62 pN [16]. Ab initio calculations on formamide dimers usually 
IeadtoX=3&50pN[19]. 

For the solution of the time-dependent Schrodinger equation we used the displaced 
oscillator state ansatz ( ID2)) [3]. In [3,5] the expectation valuesof the Hamiltonian (1) 
with I Dz) was formed and this expectation value was used as the classical Hamiltonian 
function. In this way Davydov obtained the equations of motion. Kerr and Lomdahl 
[20] haveshown that theseequationscan be obtained also bypurelyquantum mechanical 
methods and also for states of more than one quantum [XI. Explicit forms of the 
equations of motion used can be found in [l]. 

In the case of Davydov’s more sophisticated IDl) states the optimized equations of 
motion can only be obtained by quantum mechanical methods [22, U]. Here Davydov’s 
[5] method leads to different equations which do not reproduce the exactly soluble 
transportless case (J = 0) of (1) as shown by Brown ef al[24-26], while the optimized 
I Dl) equations do [22, U]. The I Dz) state reproduces the lattice dynamics for J = 0 
correctly but leads to an incorrect phonon energy [24-26]. Since ID2) results can be 
mapped onto the results of the partial dressing theory of Brown and Ivic 1271 and only 
the energies are incorrect, we decided to use the IDz) equations for our calculations. 

In practical calculations on chains of N units we added an additional potential term 
V‘ = W’(ql + qN) with W’ = lOOW to (1) in order to keep the chain ends fixed. For the 
inclusionoftemperature we firstsolve thedecoupledlatticeproblem (X = 0) 1281, which 
is simply a chain of coupled harmonic oscillators. As initial excitations we distribute an 
energy of NkBT (where kB is Boltzmann’s constant) on the normal modes using Bose- 
Einstein statistics. Half of this energy was distributed as potential energy and the other 
half as kinetic energy. Thus the lattice displacements at a given time lo are 

Ga(t0) = vnkYk CoS(WhtO + ‘?k) 
k 

where the initial displacements and momenta are contained in yk and qh: 

Here wk are the eigenfrequencies and V contains the eigenvector coefficients of the 
decoupled chain. The time to can be chosen arbitrarily. The results of soliton dynamics 
do not depend on the choice of to as we have shown in [ 141. However, since to is the time 
actually used for lattice equilibration, it should he kept explicitly to ensure that the 

. .  



4336 W Flirner 

reported calculations are fully reproducible. At to with the thermally equilibrated lattice 
we introduce a vibrational quantum at a given site no (usually we use N = MO, no = 199 
and io = 120 ps). 

Now q.(t + ro) can be decomposed into two parts: 

4.0 + r 0 )  = QJO +&O + to)  (4) 
where Q,(O) = 0 and 

Using M i n  = W(qn+ - 2qn + qn- ,) the equation of motion for Q ,  is 

MQn = w(Qn+, - 2 Q n  + Q r r - 1 )  +X(Ian+r12 - IanI* ) .  (6) 
Now one performs a phase transformation on U,: 

~ , , = b . e x p ( - i ~ / ~ ~ ' ~ ( q .  -qn-,)dt '  ) =b,exp (-3 - (7) 

with 

(8) 
Y k  

k wk 
f n = - c ( v n k  - V . - , . I , ) ~ . ( c o s [ w k ( r + r O ) + T , l - c o s ( w x r O + P ) k ) } .  

Thus we obtain finally 

ihb, = -J{bn+, exp[-i(X/fi)g,] + bn-r 

x exd+iW/fi)g,-111+ X ( Q ,  - Q . - I ) ~ .  (9) 

8. =f,+, -f" (10) 

M Q , = w ( Q n + i  - 2 Q ,  + Q.-,)+X(/b,+l12-Ib,12). (11) 

where 

and 

Note that, for r = ro,fn(to) = 0 and thus b,(ro) = un(fo). la,(( + rO)l2 = (b& + to)(2 holds 
anyway. Note further that Wg, = Apn(t + to) = pn(r + to)  - p&) is the change in 
momentum of unit n due only to thermal motion. 

As equation (9) shows, the heat bath introduces two oscillating phase factors at 1. 
These oscillations occur in both space and time. The spatial oscillation is due to the 
normal mode coefficients Vnk. With increasing temperature the admixture of higher 
normal modes increases, which have more spatial oscillations owing to their larger 
number of nodes. Thus temperature has the same net effect as disorder in the site energy 
Eo which can be traced back to exactly the same mathematical structure [l]. However, 
in addition we also have oscillations in time which become faster with increasing tem- 
perature owing to the higher frequencies ( w k )  which become more important. Since the 
phases at J are proportional to the coupling constant X ,  one expects a threshold value 
forX. IfXbecomes larger than thisthreshold, the solitonshould bedestroyed. However, 
its value has to be determined numerically. 

Since in our model only a phase at J occurs, this phase factor cannot be viewed as an 
analogue to the Debye-Waller factor found in IDl) theories [5, lo]. In these cases the 
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Figure 2. Survey of the [W. XI-parameter space at J = 0.967 meV and T = 0 K for I D2) 
dynamics for a one-site excitation: 0, dispersive; X, dispersive solitary wave travelling 
slowly; @, travelling soliton; @, pinned soliton; -, function given in equation (12). 

exponent contains a real part and thus J is scaled to lower values. However, Scott [29] 
argues that probably one should introduce an additional Debye-Waller factor into the 
I D2) theory also. A possible way to introduce a Debye-Waller factor into ID2) theory 
could be to use the factor occurring in I D J  or partial dressing theory and remove its site 
dependence. However, it is questionable whether such aprocedure would be consistent. 
In the following sections we shall compare the results of our above-described model also 
with those of other methods to treat temperature. These methods will be described in 
the appropriate sections. 

Asmentioned above, we usedn,(O) = 6,.,,inachainof200unitsasinitialconditions. 
For the numerical solution of the equations of motion a Runge-Kutta method correct 
up to fourth order in the time step z was applied [30]. Using a time step of r = 1 fs and 
T = 300 K each of the simulations through 120 ps required roughly 850 CPU s on a CDC 
Cyber 995 E computer. The norm remained constant up to about and the total 
energy error was less than 0.6% of its initial value. A possible (owing to numerical 
errors) imaginary part of the total energy remained zero within 

For comparison we show in figure 2 the results at zero temperature and J =  
0.967 meV. The full curve corresponds to the formula 

eV. 

W = (16/n2J)X2 (12) 

which gives the threshold for travelling solitons in zero-temperature continuum theory 
[29]. Eachcircle representsasimulation performed. The resultsshow that the continuum 
theory formula (12) is well reproduced by our numerical study. The threshold for pinning 
shows a linear curve. A surprising observation was made for W = 10 N m-l with X = 
100, 110, 120 and 130 pN. In those cases besides the pinned soliton a travelling small- 
amplitude soliton is emitted. 

In figure 3 the results of our simulations are shown for J = 0.5,0.7,0.9 and 1.1 meV 
in the same way as figure 2 for T = 300 K. 
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Figure 3. Same as figure 2 bul at T = 300 K with our heat bath model for (a) J = 0.5 
(b)J=O.7meV,(c)J=O.PmeVand(d)I= 1 , l m e v .  
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First of all one recognizes that the zero-temperature continuum limit curve (12) still 
agrees fairly well with the threshold X1 for the formation of travelling solitons. This 
observation in connection with previous results [14] was first made by Scott [29]. The 
agreement, however, is best for small values of J and fairly good up to J = 0.967 meV, 
while for J = 1.1 meV it is worse. However, as discussed already in [14] for T = 300 K 
there is a second threshold X2. For X Z X2 the travelling solitons are destroyed by 
thermal fluctuations. Since X,(W) intersectsX,(W), we also have a thresholdvalue for 
W helow which no travelling solitons are possible. We find this value to he 20 N m-l for 
J=0.5meV,30Nm~LforJ=0.7meV,and40Nm~LforJ=0.9meVandalsoforJ= 
1.1 meV. However, since for X2(W) no analytical form is known, these values can only 
be determined numerically. In general, the smaller J, the larger the stability region of 
travelling solitons becomes. This is to be expected physically, since J is responsible for 
the dispersion of the excitation. 

In addition a third threshold X3(W) occurs such that for X >  X3 a pinned solitary 
wave occurs. For large values of W ,  X, and X, coincide and no dispersion can be 
observed. Physically for W > W ,  (W, is the soliton threshold for W) if X < X1 the non- 
linearity is not strong enough to prevent the dispersion of the initial excitation. For 
XI < X < X2 the non-linearity is strong enough for this purpose and a travelling soliton 
results. However, since the thermal fluctuations enter the equations of motion for a, in 
a termproportional toX,dispersionoccursagainforX, < X <  X3.Thenthefluctuations 
in the term X(q, - 4.- &. are large enough to destroy the soliton. Finally, for X > X3 
a pinned soliton occurs which disperses very slowly into the chain. W, occurs because, if 
Wissmall, thedisplacementsq,, - q.-! must belarge toaccommodateapotentialenergy 
lNkBTin the lattice. These large displacements interfere with the soliton and are then 
able to destroy it. 

Brizhik et al[30] found from continuum theory that for an initial excitation located 
at site noand given by 

a, = A  sech[(n - no)X2/4JW] (13) 
the threshold for soliton formation should be at X = 0. A is a normalization factor. Thus 
it seems to beinterestingtostudy thiscase too. Infigure4(a) weshowforJ= 0.967 meV 
the case T = 0. Points in circles indicate here computationswhere the width of the pulse 
is too large to allow meaningful simulations within a chain of 200 units. no = 199 was 
used in the case of figure 4. That implies that a soliton threshold of X = 0 does not mean 
too much since for small X the initial pulse is already broader than 200 units. In the 
small-X region, rather broad solitary waves occur. They move very slowly away from 
no = 199 and tend to stop after a couple of units. In addition they disperse slowly. 
Crossed black circles in this region mark cases where the waves are not fully dispersed 
after 120 ps. Real solitons show up for X-values larger than in the case of a one-site 
excitation. In the region of large X and small W the pulse (13) is so small that it can he 
already considered as a one-site excitation. The soliton thresholds are linear in this case. 
In figure 4(6) we show the T = 300 K case. Obviously the region of travelling solitons is 
much smaller than for the one-site excitation. The region with extremely slowly moving 
dispersive solitary waves is smaller than for T = 0 as expected. An explanation for this 
phenomenonisstillmissing. Ifonecentresthe pulseatno = 150(figure4(c)), the picture 
becomes irregular. However, the region where solitons occur is larger. In our opinion 
an initial sech pulse is somewhat artificial. There is no physical reason why energy 
released by hydrolysis of ATP should excite the amide-I oscillators with a preformed 
soliton shape. To us an initial one- or two- site excitation seems to be far more probable. 
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Figure 4. Same as figure 2 with our heat bath model for (a) T = 0 K ,  sech pulse at no = 199, 
(b)  T = 300 K,  sech pulse a1 no = 199, and (c) T= 300 K, sech pulse at no = 150. Here 0 
indicates parameter values where such a pulse iS spread over the complete chain and thus a 
200-unit chain allows no meaningful simulation. 

3. Langevin equation 

In the Langevin unsutz for the treatment of temperature as reported by Halding and 
Lomdahl[6] and Lomdahl and Kerr 1311 a damping term aod a random force term is 
added to the equations of motion: 

ihu. = -J(u,+, * u s - , )  + X(4 .  - qn-, )un (144  



Using as correlation function 

(F(X,  t )F(O,  0)) = 2 M k ~  Tr6(X)s(t)/a 

(a  is the lattice constant) (146) becomes a Langevin equation. The random forces are 
assumed to follow a normal distribution with standard deviation 6: 

w(F.) = ( 1 / G )  exp(-~:/2u). (16) 
In actual computations we computed a series of L = 12 random numbers X,,(t) 
(0 < Xn,(t) G 1) for each site at each time step t and generated the forces as 

Thus the variance of X $  - 4 is & and the standard deviation of F:) is 6, with its mean 
value 0 as required. The interval for the random forces is IF,? I G 6 6  Thus (17) 
represents an approximate Gaussian distribution which would be exact for L + m. The 
effect of the two additional terms is to drive the system into thermal equilibrium with a 
time constant r. Requiring the random force to be constant within a time step t we 
obtain 

U = 2MkB T T / s .  (18) 
r is the inverse time constant of the heat bath. If r is large, the heat bath is fast and vice 
versa. In our actual simulations in this case we fixed units 1 and N ( N  = 200) at q1 = 
q N  = 0 and we used 5 = 5 fs. For a typical simulation the norm is conserved up to 
in 120 ps. Halding and Lomdahl[6] and Lomdahl and Kerr [31] worked with two models 
at the standard set of parameters only. They chose r = vmin, where v- is the lowest 
(non-zero) frequency of the lattice. For a chain of 100 units, W = 13 N m-l and M = 
114 M,,thelowestphononfrequencyiso, = 0.2594ps-',leadingto vmin = 0.041 28 ps-' 
or vmin = 0.005@/MU. For 200 units we obtain oo = 0.1297 ps-' and r = vrmo = 
0.020 46 ps". Thus the heat bath has the same time constant as the slowest vibration of 
the lattice. 

In model I they equilibrated the decoupled lattice until 

{x4Mqi(t))  n =&NkBT (19) 

is achieved and thus the lattice is equilibrated. Then the heat bath is switched o f f  and 
the soliton started. This model should give similar results to ours. In model 11 they 
switched on the heat bath and the soliton dynamics simultaneously. However, this 
corresponds to an amide-I excitation in a lattice with a zero-temperature equilibrium 
structure. We believe that model I and ours are more physical, since in these cases the 
soliton is started in a thermally equilibrated lattice, a situation which should be closest 
to reality. Finally we introduce a model 111, where we first equilibrate the lattice but, 
after the soliton has been started, the heat bath is not switched o f f .  Model I and ours 
should be reasonable if the heat bath is slow compared with the soliton velocity, while 
model 111 should be the best if the actual value of r is of importance. 

For comparison with the results of [6,31] note that we used the asymmetricexciton- 
phonon interaction while [6,31] use the symmetric interaction. However, the structure 
(figure 1) suggests that anasymmetricinteractionis realistic. In the symmetricinteraction 
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model the C = 0 oscillator n would interact with the hydrogen bond in which it takes 
part with the same strength as with the hydrogen bond between units n and n + 1 in 
which it does not take part. Estimates show that the coupling constant for the latter 
interaction is an order of magnitude smaller than that for the former, and thus the latter 
interaction can be neglected [U]. For comparison we show in figure S(a) the results of 
an [ X ,  W] parameter space survey at J = 0.967 meV, T = 300 K, wing our model. One 
simulation using Langevin equations used typically 100 CPU s for model I, 700 CPU s for 
model 11, and 1500 CPU s for model I11 on our Cyber 995E computer. In figure 5(b) we 
show the results obtained with model I and r = vmln. As we expected, figures 5(a) and 
5(b)  are very similar and the two models agree with each other. In the region of the 
parameter values used in [6,31] we find no soliton, in complete agreement with [6,31]. 

Using model I1 for all parameter sets in figure 5(b )  we found no trace of a soliton or 
a solitary wave, again in agreement with [6,31]. However, as explained above, we 
consider model IIasratherunphysical. Inmodel1,risnot important, becausc thelattice 
is equilibrated before the soliton start and the heat bath is switched off afterwards. In 
model I1 we expect that for decreasing r the results should approach the zero-tem- 
perature situation since, if the heat bath becomes very slow, it simply has not enough 
time to disturb the soliton. In figure 5(c) we show the results for model 111 using I' = 
0 . 1 ~ ~ ~ ~ .  As is obvious for the slow heat bath we obtain results which are in rough 
agreement with ours and those of model I.  In figure S(d), r = vmin is used. We see that 
the region of soliton stability is shifted to smaller X-values. Obviously the faster heat 
bath requires a smaller interaction of the lattice fluctuations with the oscillators to allow 
a travelling soliton. Using a still faster heat bath (r = lOv,,) not shown in figure 5, the 
region of stable travelling solitons vanishes completely. Only pinned solitons are still 
found. 

Thus our model agrees with Langevin model I and with model 111 if in the latter case 
the heat bath isnot too fast (r S Y-). However, concerning Langevin-equation models 
the point made by Bolterauer [9] still holds. He uses the simple model of two coupled 
harmonic oscillators and treats them both quantum mechanically on the one hand, and 
one quantum mechanically and the other classically on the other hand. He finds that in 
the adiabatic treatment the energy transferred into the quantum oscillator is too large 
compared with the exact treatment. He concludes [9] that thus in Langevin models the 
effects of thermal fluctuations on the soliton may be overestimated. 

4. Perturbation theory 

A very appealing model for treating temperature effects on Davydov solitons was 
recentlyintroduced by CottinghamandSchweitzer [Ill. They [ll] coulddiagonalize the 
Hamiltonian partially. Then one can define k = fio + f where Ho is the diagonal part 
of fiand vthe non-diagonal part. Thus P a n  be treated asaperturbation. Furthermore 
the Davydov soliton state (ID2)) is an exact eigenstate of Ho and thus first-order per- 
turbation theory using f as perturbation allows one to calculate the soliton lifetimes. 
They couldcompute the transitionprobabilityfromaninitialstatecontainingaDavydov 
soliton and a thermal distribution of phonons to a final state without the soliton. From 
this probability they could derive an explicit expression for the lifetime of a pinned 
soliton. 

To compare our model with that of Cottingham and Schweitzer Ill] we took a cyclic 
chain as in [Ill where only pinned solitons are found numerically [28]. We used W = 
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13Nm,X=62pNandan(0)  = A  sech[(n - 100)XZ/WJ]asinitialconditionasin[ll]. 
In addition we implemented the symmetric interaction into our program for the purpose 
of comparison, since in [Ill this model was used. As shown in [20], the two interaction 
modelslead to rather different results. For comparison we varied Jandestimated soliton 
lifetimes from our model. For this purpose the initial excitation was placed at site 100 
and we used the soliton detector plot in [6,31]. In this plot each point in the (n. t )  plane 
where I U , ( ~ ) / ~  > 0.02 and qn+l - q.-l < 0 (the typical soliton conditions) coincide is 
marked. The case J = 0.967 meV is shown as an example in figure 6(0). The plot shows 
that this kind of presentation is not suitable to estimate soliton Lifetimes. 

The exciton part of the numerically computed wave function is 

I$(r)) = exp(-iEt/fi) Z a , ( M  IO) (20) 
n 

Further, the exciton part of the solution of & for soliton velocity U, = 0 is given by [ll] 

IDz) = exp(-iEt/fi)A 2 sech[(n -no)XZ/WJ]h.'lO) 

I? = Eo - 25 - WzJ3/3X4. 

(DzI@(f)) = exp(iAr/h)A a,(r)sech[(n - no)Xz/WJ] (24) 

A =  -2J -  WzJ3/3X4-fZ[p:/M+ W ( ~ . - % - I ) ~ ]  (25) 

(22) 

(23) 

n 

Thus we can easily compute 

n 

and the weight of the initial soliton state in the exciton part of the wave function is 
w(r) = / (Dz /Q  ( t ) ) l .  Figures 6(b) and (c) show two examples of w(t) for long time 
simulations with J = 0.2 and 0.3 meV. As an indicator for the soliton lifetime we take 
the last maximum of w ( f )  before the steep descent to 0.5 or below, which occurs for each 
J value considered. For the actual estimation of lifetimes we have recalculated the 
dynamics through a smaller time appropriate for each value of J (double the soliton 
lifetime from perturbation theory). However, one has to keep in mind that, from 
dynamical simulations, only estimates can be obtained. 

In table 1 we show the lifetimes (zl) obtained with our model at 300 K and the 
lifetimes (z2) computed with equation (31) of [ll] for some values of J. Our program 
for computation of zz was checked by reproducing the results given in [ll].  In figure 7 
the results are plotted to facilitate comparison. Obviously the two models agree very 
well and the decrease in soliton Lifetimes with increasing J is certainly correct since J 
governs the dispersion and J = 0 is simply the transportless case. 

5. Conclusion 

We have studied the soliton stability at T =  300 K within a wide range of parameter 
valuesand indifferent models. We found agreement ofourmodelwithLangevin models, 
provided that the heat bath is not too fast compared with the soliton. Our model agrees 
at least qualitatively also with perturbation theoretical results. For further justification 
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Figure 6. (a) Soliton detector plot for an initial sech 
pulse in a cyclic chain of 201 units using the symmetric 
interaction at 300 K (M = 114 mp, W = 13 N m-', 
X = 62 pN, I = 0.967 meV. (b) Time evolution of 
w(r )=  l(DJO(f))lforthessystemof(n)butwithI= 
0.2 meV. (c) Same as (b) for J = 0.3 meV. 
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Table 1. Lifetimesofapinnedsolitoninacydicchain of2Wunitswithasech pulse asinitial 
condition at 3W K (W = 13 N m-'; X = 62 pN; M = 114mp) as estimated from our model 
( r , )  and calculated from perturbation theory 1201 (r2) as function of 1. 

I 1, Z! 

(mev) (PS) (PS) 

~~~ ~~~ ~~~~~~ ~~~~ ~~ 

. - .~ .. . ,  

0.0 x r 

0.1 96.0 207.91 
0.2 25.0 24.58 ~~ 

0.3 8.2 8.14 
0.4 3.8 ~~ 3.95 . . . .  
0.5 2.6 2.34 
0.6 1.6 1.56 
0.7 1.5 1.13 
0.8 1.1 0.87 
0.9 0.7 0.69 
1.0 0.6 0.58 

~~~ ~~~~~~ 

. .  . ." 

Figure 7. Soliton lifetime ro as function of 1 computed with the Cottingham-Schweitzer 
formula (-) and as estimated Lrom our model (*). 
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of our model the extension of the recently published quantum Monte Carlo simulations 
[12] to parameter values where we find stable solitons at T = 300 K would be desirable. 

However, based on the above given comparisons, we are confident that our basic 
conclusion of soliton stability in a parameter region W > 40 N m-l and X > 5 M O  pN 
should be model independent. The values of Xfor proteins found in the literature are 
roughly in this range (experimental value X = 62 pN). The usually quoted value of W = 
13 N m-’iscertainly too small to allow soliton formation. However, asalready discussed 
before [14], a value of W taken from crystalline formamide [32] is certainly too low. In 
formamide, free molecules vibrate while, in proteins, vibration of a hydrogen bond 
requires distortions of the covalent backbone of the a-helix. Thus an effective spring 
constant for this vibration should be larger than the fomamide value. For a clear 
decision of whether the Davydov mechanism io proteins can function, first of all realistic 
parameter values have to be established. Attempts based on ab initio calculations are in 
progress [33]. Further, the existing models for treating temperature effects should be 
compared, especially their dependence on the parameter values. Finally one has to 
mention that there is still no quantitative information available about the errors intro- 
duced by the different a m a h  states used in the literature. 
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